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Failure regimes in (1+1) dimensions in fibrous materials

I. L. Menezes-Sobrinhb A. T. Bernarde€,and J. G. Moreira
1Departamento de Bica, Universidade Federal de \dsa, 36570-000 Visa, MG, Brazil
’Departamento de Bica, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
3Departamento de Bica, Instituto de Ciecias Exatas, Universidade Federal de Minas Gerais, CP 702,
30123-970 Belo Horizonte, MG, Brazil
(Received 31 August 2000; published 26 January 2001

In this paper, we introduce a model for fracture in fibrous materials that takes into account the rupture height
of the fibers, in contrast with previous models. Thus, we obtain the profile of the fracture and calculate its
roughness, defined as the variance around the mean height. We investigate the relationship between the fracture
roughness and the fracture toughness.

DOI: 10.1103/PhysReVE.63.025104 PACS nuner62.20.Mk, 64.60.Fr, 05.46.a

[. INTRODUCTION absorbed before catastrophic fracture occurs. There are sev-
eral works in the literature which investigate the relationship

The fracture of a material under different loading condi-between the fracture roughness and the fracture toughness
tions is a complicated phenomenon that continues to attra¢?—11].
the attention of several physicists and engineers. The fracture In the present Rapid Communication, we simulated a
follows a Sequentia] process of nuc|eation' growth’ and Coam0d6| for fracture in fibrous materials which allows us to
lescence of numerous cracks. These cracks tend to createhtain the fracture profile of samples in contrast with previ-
rough profile which often can be described by self-affine0us modelg6,12—16. We calculate the profile roughness
scaling[1]. In the last decade, great theoretical and experiand used the obtained values to define the transition between
mental efforts have been done trying to understand the prgwo fracture regimes: catastrophic and shredding. We also
cess of formation and propagation of cracks in materials. Anvestigate the relationship between the fracture roughness
great number of studies have been devoted to this procegdd toughness for fibrous materials.
from the point of view of statistical mechanics, which utilize
concepts such as percolation, fractals, scaling law,[&{2]. Il. MODEL
A variety of computational models for material fracture have
been developed in recent years and provided interesting re- Our model consists of &1+1) d bundle of N, parallel
sults [2—4]. However, the high degree of correlations be-fibers all with the same elastic constdntin order to simu-
tween the constituents leads to a high computational cost. Alate the height of the sample, the fibers are divided into
alternative is to employ fiber bundle models introduced moresegments with the same length. The fiber bundle is fixed at
than 40 years ag5], in which bundles of unidirectional both ends to two parallel plates. One plate is fixed, and in the
fibers form a system with low degree of correlations allow-other, a constant force is applied, for example, by hanging
ing the fracture process to be simulated in a large scale. @ weight on it. This force is shared in the same amoumnt,

The fracture of the material can occur through a big crackon each fiber of the bundle, which undergo the same linear
which percolates the sample. In this case we say that thdeformationz=F/Nk, whereN is the number of unbroken
fracture is catastrophic. When the fusion of small crackdibers. When the deformationreaches a critical value,,
cause the fracture of the material, it is called shreddislg the failure probability of an isolated fiber is equal to 1. The
In the catastrophic regime the fracture profile is reasonablyailure probability of a fibei is given by[6]
smooth, while in the shredding regime it is very rough. A
parameter of easy physical interpretation used to characterize ) (6°—1)
fracture surfaces is the roughness. It is defined as the vari- Pi(o,t)= (n+1) exp{ t }
ance around of the mean height of the fracture profile, and '
measures the complexity of the crack path. Thus, the rough(\a,\r/hereni is the number of unbroken neighboring fibess,

is the fracture profile the harder is the crack path. The rough-_ 217,= FINKz, is the strain of the materiat=KgT/E, is

ness has a direct relation to the fractal dimension, whicq . .
. he normalized temperaturég is the Boltzmann constarnt,
characterizes the fractal character of the surface fracture.

: i o S the absolute temperature, aBd is the critical elastic en-
Therefore, a high fractal dimension indicates a very rougH : : N ; I~
fracture profile[1,7]. ergy. In this model, besides finding the failure probability of

Another important parameter in the study of fracture is& fiber, we have to indicate in which segment it breaks. This

the fracture toughness. This quantity measures the amount E?gment is randomly selected and the probability of the fiber

energy that a material can absorb before it fractures. Th 0 break in it is given by

fracture toughness is intimately related to the amount of

cracks that appear in the materf&l. Therefore, the larger bi(m) = (mj+1)
the number of cracks in the sample more energy will be A 7

@

@
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where m; is a vector which indicates how many times a 100 ‘ ‘
segmentj broke and{=2;(m;+1). The form of Eq.(2) ol ﬂ J ¥ 1 H‘
simulates a concentration of tension near to the region where_ |
the fiber bundle is more weak. T e0f 1t 1 ’

At the beginning of the simulation, the bundle is submit- § . i
ted to a initial strain given by $ 101 W m l W

20 t \
8o= é — L (3) 0 / L\M WMJWWMMW J‘J
z. Ngkz 0 400 0 400 0 400
N0 N0 N0

At each time step of the simulation we randomly choose a

fiber of a set oququO unbroken fibers. The number FIG. 1. Fracture profiles for three different forces. From left to
represents a percentage of fibers and allows us to work witAght: F=4000, F=2800, andF=2000 arbitrary units. In this
any system size. Then, using E@d) we evaluate the fiber Simulation we used a total of 600 fibers.

failure probabilityP; and compare it with a random number )

r in the interval[0,1). If r<P; the fiber breaks. We then F=2000 more than one crack crosses the material. It can be
choose a segmepin the fiber and evaluate its probabiliy ~ S€en in Fig. 1, that the rupture of the sample begins in dif-
to break, using Eq2). If the probability¢ is higher than the ferent §e_gments. Thls occurs becal_Jse we did not consider a
random numbep the fiber breaks in the chosen segment. Ifdeterministic starting notch in our simulations.

not, we analyze the neighboring segmenis-1) and Figure Z{a? shows the re;ults obtalneq for the roughness
—1) and again, evaluate the probability If the condition W as a function of the applied fordefor different vallues of
p<¢ does not hold to neither of the neighboring segments',\'O- To measure the roughness of the fracture profile we used
we return to the initial segment and test the conditjon the method of the best linear least-square fitting described in
< ¢ for a new value ofp. This process continues until the Ref-[17]. In this plot we can observe that the roughneés
conditionp< ¢ is true. Once defined the segment where thgdecreases as the foréeincreases, and after a critical force
fiber breaks, we begin to test all neighboring unbroken fibers: ¢ It Stays constant. For each system size we have a charac-
The first segment tested in the neighboring unbroken fibers i&"istic value for¢, which increases with the increase of the
the segment where the previous fiber broke. The failurdumber of fibers\,. This indicates that the greater the num-
probability P; of these neighboring fibers increases due taPer Of fibers in the bundle, the tougher is the sample. For
the decreasing of; and a cascade of breaking fibers mayF>F_c the fracture is catastrophic, i.e., the brea_kage of a
begin. This procedure describes the propagation of a cradiber induces the rupture of the whole bun_dle. In this case the
through the fiber bundle, which occurs in the perpendiculaPundle breaks with only one crack. In this region the crack
direction to the applied force. The process of propagatiorpropagates in the material with high speed, leading to a quite
stops when the test of the probability does not allow rupturd@Pid rupture process. Fér<F. the rupture of the bundle

of any other fiber on the border of the crack or when the

crack meets another already formed crack. The same cascac 1000
propagation is attempted by choosing another fiber of the se 800 ™ eNO=2000 |
Ng. After all the N, fibers have been tested, the straitis = NO = 2200
. . 3 . .~ 600 A NO=2400 i
increased if some fibers have been broken. Since the force ik’ v NO = 2600
fixed, the greater the number of broken fibers, the larger is 400 > NO=2800 |
the strain on the intact fibers and the higher is their failure * N0 =3000
probability. Then, another set &f, unbroken fibers is cho- 200 ]
sen and the entire rupture process is restarted. The simulatio 0 ‘
terminates when all the fibers of the bundle are broken, i.e., 1000 2000 F 8000 4000
when the bundle breaks apart. At this stage we consider the
profile of the fracture and analyze its statistical properties. 1000 '
800 @ »un7ase srcvan o " DPAETR A ]
lll. RESULTS S 00 g v..%* 1
Using the model described in the preceding section We§ 400 » -
simulated the fracture of a fibrous materials under a static 5,
force F. In these simulations we considered the elastic con- 200 . ]
stantk=1, the critical deformatiore.=1, the number of 0 ‘ ‘ Bk 8
segmentsy=100 and the normalized temperature0.5. 085 0.95 5, 108 115

Figure 1 shows the fracture profile for a setN§= 600
fibers and three different forces. Notice that, the lower the F|G. 2. (a) RoughnessV(F) as a function of the applied forde
applied force the larger is the roughness of the fracture profor different numbers of fiberl,. The data were averaged over
file, i.e, more irregular is the crack path. H6r=4000 only =~ 1000 samples(b) The x axis was converted to the initial straify
one crack propagates in the material and Fer 2800 and  =F/N,.
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occurs due to the formation of small cracks, which weaken 10"

the bundle. Here, the crack speed tends to zero and a slo ONZ=§Z%
. . . o N0 =
process of successive ruptures appears in the'mgterlal. . 10" o NO 2400
In Fig. 2(b), the x axis was converted to the initial strain v NO = 2600

> NO = 2800
. . . * NO=3000
same roughness-strain curve. From this curve we can find th;

critical initial strain &y, which does not depend on the sys- =% ;¢¢ |
tem size. Our results indicaig,.=1.134. We may assume §°

©

6o=F/Ny. The data are now found to collapse all on the E\ 100 b
N
o~

that, for an initial strain greater thafy, just one crack pro- 10° | i) _

vokes the rupture of the material and that, for a initial strain o e e

below &, the rupture occurs through the fusion of small - ‘ ‘

cracks. 1000 1585 2512 3981
The critical valuedy, can be obtained analytically. The log,(F)

failure probability, Eq.(1), can be written as _ _
FIG. 3. Fracture toughness, vs the applied forc& for differ-

I'(t,d) ent numbers of fiberll,. The data were averaged over 1000 statis-
(4) tically independent samples.

number of cracks in the material increases. Also, notice that
the fracture toughness increases with the system size. Thus,
the higher the number of fibers the more energy will be ab-
(5)  sorbed by fracture.
Some works in the literature conjecture that there is a
) relationship between the fractal dimension and the fracture
Using Eq.(4) we may observe that foF(t,8)=2.0 the {5, ,3hnes§7—10], while others conjecture that such relation-
breakage of any fiber induces the rupture of the bundle W'ﬂ%hip does not exigtL8,19. In this paper we investigated the

just one crack. Then, we can assume that there is a criticalynnection between the roughnasis directly related to the
value forI'(t, ) = 2.0 that defines the transition between tWO £4ctal dimension. and the toughness fractire

regimes. In the first regime, a catastrophic fracture occurs in Figure 4 shows how the roughne#s changes with the
the first attempt to break the bundle, while in the second on€v

wherel'(t, 5) is defined ag6]

5—1
t

I’(t,é):&exp{

. oughnesK . for several number of fiberd,. In this figure
the rupture of the bundle occurs due to the formation o g ¢ 0 g

. e can see that the roughnassincreases with the increase
small cracks, which weaken the bundle. From &) we can g

h hat th lized be ai b of the fracture toughnesk., until it reaches a stationary
show that the normalized temperature can be given by state. We can interpret this figure in the following manner:

52 -1 with the increase oK., small cracks appear at all parts of
fm—0¢ = (6)  the sample, making the fracture profile rougher. In the satu-
In(I'¢) —In( oc) ration region, we have a larger number of small cracks and

they are totally uncorrelated. The phenomenon of saturation

So, fort=0.5 andT'e(t, 8) = 2.0, Eq.(5) will be valid only if constitutes a finite size effect and is related to the number of

Spc~1.134. ! ; : -
Now we proceed to the evaluation of the fracture tough-Segments in which the fibers are divided.
nessk. . It can be defined by the work done to break the fiber IV. CONCLUSION

bundle and is given by
In conclusion, we studied a model for fracture in fibrous

materials in (% 1) dimensions which take into account the
Ke=2 7, (7) (1)
! 1000
where; is the work done to break each fiber of the bundle. 800 | |
The work 7; is obtained by the following expression:
© NO =2000
r o NO =2200 J
ni=3KZ, ®) 600 5 NO = 2400
. . o } v NO =2600
wherez; is the deformation of the fiber 400 - > NO=2800 A
Figure 3 shows the log-log plot of the fracture toughness * NO = 3000
K. versus the forcé for different system sizes. This figure 200 | u .
shows how the fracture toughnessdecreases with the in- ?Qy%
crease of the forcg, until it reaches a minimum value. This 9,7 P e re e o

value is attained when a critical forde, is applied to the log,(K/N,)
system. Above oF . the fiber bundle breaks catastrophically. 0

It is known experimentally that a catastrophic break con- FIG. 4. Roughnes®/ vs the fracture toughness, for different
sumes little energy. As the forde decreases beloWw., the  numbers of fibers\,. The data were averaged over 1000 statisti-
material can absorb more energy before it fractures and theally independent samples.

025104-3



RAPID COMMUNICATIONS

MENEZES-SOBRINHO, BERNARDES, AND MOREIRA PHYSICAL REVIEW B3 025104R)

rupture height of the fibers, in contrast with previous modelsroughness and the fracture toughness could stimulate further
We obtained the fracture profile and evaluate its roughnesstudies in order to check whether these relations are valid or
and toughness. In this work we show that in the catastrophioot.
regime the roughness of the fracture profile is reasonably
smooth. In the shredding regime, in which slow cracks are ACKNOWLEDGMENTS
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