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Failure regimes in „1¿1… dimensions in fibrous materials
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In this paper, we introduce a model for fracture in fibrous materials that takes into account the rupture height
of the fibers, in contrast with previous models. Thus, we obtain the profile of the fracture and calculate its
roughness, defined as the variance around the mean height. We investigate the relationship between the fracture
roughness and the fracture toughness.
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I. INTRODUCTION

The fracture of a material under different loading con
tions is a complicated phenomenon that continues to att
the attention of several physicists and engineers. The frac
follows a sequential process of nucleation, growth, and c
lescence of numerous cracks. These cracks tend to cre
rough profile which often can be described by self-affi
scaling@1#. In the last decade, great theoretical and exp
mental efforts have been done trying to understand the
cess of formation and propagation of cracks in materials
great number of studies have been devoted to this pro
from the point of view of statistical mechanics, which utiliz
concepts such as percolation, fractals, scaling law, etc.@1,2#.
A variety of computational models for material fracture ha
been developed in recent years and provided interesting
sults @2–4#. However, the high degree of correlations b
tween the constituents leads to a high computational cost
alternative is to employ fiber bundle models introduced m
than 40 years ago@5#, in which bundles of unidirectiona
fibers form a system with low degree of correlations allo
ing the fracture process to be simulated in a large scale.

The fracture of the material can occur through a big cra
which percolates the sample. In this case we say that
fracture is catastrophic. When the fusion of small crac
cause the fracture of the material, it is called shredding@6#.
In the catastrophic regime the fracture profile is reasona
smooth, while in the shredding regime it is very rough.
parameter of easy physical interpretation used to characte
fracture surfaces is the roughness. It is defined as the v
ance around of the mean height of the fracture profile,
measures the complexity of the crack path. Thus, the roug
is the fracture profile the harder is the crack path. The rou
ness has a direct relation to the fractal dimension, wh
characterizes the fractal character of the surface fract
Therefore, a high fractal dimension indicates a very rou
fracture profile@1,7#.

Another important parameter in the study of fracture
the fracture toughness. This quantity measures the amou
energy that a material can absorb before it fractures.
fracture toughness is intimately related to the amount
cracks that appear in the material@2#. Therefore, the large
the number of cracks in the sample more energy will
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absorbed before catastrophic fracture occurs. There are
eral works in the literature which investigate the relations
between the fracture roughness and the fracture tough
@7–11#.

In the present Rapid Communication, we simulated
model for fracture in fibrous materials which allows us
obtain the fracture profile of samples in contrast with pre
ous models@6,12–16#. We calculate the profile roughnes
and used the obtained values to define the transition betw
two fracture regimes: catastrophic and shredding. We a
investigate the relationship between the fracture roughn
and toughness for fibrous materials.

II. MODEL

Our model consists of a~111! d bundle ofN0 parallel
fibers all with the same elastic constantk. In order to simu-
late the height of the sample, the fibers are divided intoh
segments with the same length. The fiber bundle is fixed
both ends to two parallel plates. One plate is fixed, and in
other, a constant forceF is applied, for example, by hangin
a weight on it. This force is shared in the same amount,s,
on each fiber of the bundle, which undergo the same lin
deformationz5F/Nk, whereN is the number of unbroken
fibers. When the deformationz reaches a critical valuezc ,
the failure probability of an isolated fiber is equal to 1. T
failure probability of a fiberi is given by@6#

Pi~d,t !5
d

~ni11!
expF ~d221!

t G , ~1!

where ni is the number of unbroken neighboring fibers,d
5z/zc5F/Nkzc is the strain of the material,t5KBT/Ec is
the normalized temperature,KB is the Boltzmann constant,T
is the absolute temperature, andEc is the critical elastic en-
ergy. In this model, besides finding the failure probability
a fiber, we have to indicate in which segment it breaks. T
segment is randomly selected and the probability of the fi
to break in it is given by

f j~mj !5
~mj11!

z
, ~2!
©2001 The American Physical Society04-1
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where mj is a vector which indicates how many times
segmentj broke andz5( j (mj11). The form of Eq.~2!
simulates a concentration of tension near to the region wh
the fiber bundle is more weak.

At the beginning of the simulation, the bundle is subm
ted to a initial strain given by

d05
zo

zc
5

F

N0kzc
. ~3!

At each time step of the simulation we randomly choos
fiber of a set ofNq5qNo unbroken fibers. The numberq
represents a percentage of fibers and allows us to work
any system size. Then, using Eq.~1! we evaluate the fibe
failure probabilityPi and compare it with a random numb
r in the interval @0,1!. If r ,Pi the fiber breaks. We then
choose a segmentj in the fiber and evaluate its probabilityf
to break, using Eq.~2!. If the probabilityf is higher than the
random numberr the fiber breaks in the chosen segment
not, we analyze the neighboring segments (j 11) and (j
21) and again, evaluate the probabilityf. If the condition
r,f does not hold to neither of the neighboring segmen
we return to the initial segment and test the conditionr
,f for a new value ofr. This process continues until th
conditionr,f is true. Once defined the segment where
fiber breaks, we begin to test all neighboring unbroken fib
The first segment tested in the neighboring unbroken fibe
the segment where the previous fiber broke. The fail
probability Pi of these neighboring fibers increases due
the decreasing ofni and a cascade of breaking fibers m
begin. This procedure describes the propagation of a c
through the fiber bundle, which occurs in the perpendicu
direction to the applied force. The process of propagat
stops when the test of the probability does not allow rupt
of any other fiber on the border of the crack or when
crack meets another already formed crack. The same cas
propagation is attempted by choosing another fiber of the
Nq . After all the Nq fibers have been tested, the straind is
increased if some fibers have been broken. Since the for
fixed, the greater the number of broken fibers, the large
the strain on the intact fibers and the higher is their fail
probability. Then, another set ofNq unbroken fibers is cho
sen and the entire rupture process is restarted. The simul
terminates when all the fibers of the bundle are broken,
when the bundle breaks apart. At this stage we consider
profile of the fracture and analyze its statistical propertie

III. RESULTS

Using the model described in the preceding section
simulated the fracture of a fibrous materials under a st
force F. In these simulations we considered the elastic c
stant k51, the critical deformationzc51, the number of
segmentsh5100 and the normalized temperaturet50.5.

Figure 1 shows the fracture profile for a set ofN05600
fibers and three different forces. Notice that, the lower
applied force the larger is the roughness of the fracture p
file, i.e, more irregular is the crack path. ForF54000 only
one crack propagates in the material and forF52800 and
02510
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F52000 more than one crack crosses the material. It can
seen in Fig. 1, that the rupture of the sample begins in
ferent segments. This occurs because we did not consid
deterministic starting notch in our simulations.

Figure 2~a! shows the results obtained for the roughne
W as a function of the applied forceF for different values of
N0. To measure the roughness of the fracture profile we u
the method of the best linear least-square fitting describe
Ref. @17#. In this plot we can observe that the roughnessW
decreases as the forceF increases, and after a critical forc
Fc it stays constant. For each system size we have a cha
teristic value forFc , which increases with the increase of th
number of fibersN0. This indicates that the greater the num
ber of fibers in the bundle, the tougher is the sample.
F.Fc the fracture is catastrophic, i.e., the breakage o
fiber induces the rupture of the whole bundle. In this case
bundle breaks with only one crack. In this region the cra
propagates in the material with high speed, leading to a q
rapid rupture process. ForF,Fc the rupture of the bundle

FIG. 1. Fracture profiles for three different forces. From left
right: F54000, F52800, andF52000 arbitrary units. In this
simulation we used a total of 600 fibers.

FIG. 2. ~a! RoughnessW(F) as a function of the applied forceF
for different numbers of fibersN0. The data were averaged ove
1000 samples.~b! The x axis was converted to the initial straind0

5F/N0.
4-2
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occurs due to the formation of small cracks, which weak
the bundle. Here, the crack speed tends to zero and a
process of successive ruptures appears in the material.

In Fig. 2~b!, the x axis was converted to the initial strai
d05F/N0. The data are now found to collapse all on t
same roughness-strain curve. From this curve we can find
critical initial straind0c , which does not depend on the sy
tem size. Our results indicated0c51.134. We may assum
that, for an initial strain greater thand0c just one crack pro-
vokes the rupture of the material and that, for a initial str
below d0c the rupture occurs through the fusion of sm
cracks.

The critical valued0c can be obtained analytically. Th
failure probability, Eq.~1!, can be written as

Pi~d,t !5
G~ t,d!

~ni11!
, ~4!

whereG(t,d) is defined as@6#

G~ t,d!5d expFd221

t G . ~5!

Using Eq.~4! we may observe that forG(t,d)52.0 the
breakage of any fiber induces the rupture of the bundle w
just one crack. Then, we can assume that there is a cri
value forG(t,d)52.0 that defines the transition between tw
regimes. In the first regime, a catastrophic fracture occur
the first attempt to break the bundle, while in the second
the rupture of the bundle occurs due to the formation
small cracks, which weaken the bundle. From Eq.~5! we can
show that the normalized temperature can be given by

t5
d0c

2 21

ln~Gc!2 ln~d0c!
. ~6!

So, for t50.5 andGc(t,d)52.0, Eq.~5! will be valid only if
d0c'1.134.

Now we proceed to the evaluation of the fracture toug
nesskc . It can be defined by the work done to break the fib
bundle and is given by

Kc5(
i

t i , ~7!

wheret i is the work done to break each fiber of the bund
The workt i is obtained by the following expression:

t i5
1
2 kzi

2 , ~8!

wherezi is the deformation of the fiberi.
Figure 3 shows the log-log plot of the fracture toughne

Kc versus the forceF for different system sizes. This figur
shows how the fracture toughnesskc decreases with the in
crease of the forceF, until it reaches a minimum value. Thi
value is attained when a critical forceFc is applied to the
system. Above ofFc the fiber bundle breaks catastrophical
It is known experimentally that a catastrophic break co
sumes little energy. As the forceF decreases belowFc , the
material can absorb more energy before it fractures and
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number of cracks in the material increases. Also, notice
the fracture toughness increases with the system size. T
the higher the number of fibers the more energy will be
sorbed by fracture.

Some works in the literature conjecture that there is
relationship between the fractal dimension and the fract
toughness@7–10#, while others conjecture that such relatio
ship does not exist@18,19#. In this paper we investigated th
connection between the roughnessW, directly related to the
fractal dimension, and the toughness fractureKc .

Figure 4 shows how the roughnessW changes with the
toughnessKc for several number of fibersN0. In this figure
we can see that the roughnessW increases with the increas
of the fracture toughnessKc , until it reaches a stationary
state. We can interpret this figure in the following mann
with the increase ofKc , small cracks appear at all parts o
the sample, making the fracture profile rougher. In the sa
ration region, we have a larger number of small cracks a
they are totally uncorrelated. The phenomenon of satura
constitutes a finite size effect and is related to the numbe
segments in which the fibers are divided.

IV. CONCLUSION

In conclusion, we studied a model for fracture in fibro
materials in (111) dimensions which take into account th

FIG. 3. Fracture toughnessKc vs the applied forceF for differ-
ent numbers of fibersN0. The data were averaged over 1000 stat
tically independent samples.

FIG. 4. RoughnessW vs the fracture toughnessKc for different
numbers of fibersN0. The data were averaged over 1000 statis
cally independent samples.
4-3



ls
e
h
b

ar
In
l
a
e
t

ther
d or

va
d
a-
e

RAPID COMMUNICATIONS

MENEZES-SOBRINHO, BERNARDES, AND MOREIRA PHYSICAL REVIEW E63 025104~R!
rupture height of the fibers, in contrast with previous mode
We obtained the fracture profile and evaluate its roughn
and toughness. In this work we show that in the catastrop
regime the roughness of the fracture profile is reasona
smooth. In the shredding regime, in which slow cracks
formed in the material, the fracture profile is very rough.
this regime the energy necessary to break the materia
higher than in the catastrophic regime. Our results indic
that the roughnessW is related to the fracture toughness. W
believe that the search for possible relationships between
es

ci
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roughness and the fracture toughness could stimulate fur
studies in order to check whether these relations are vali
not.
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